ACIDS AND BASES

"According to this theory strong acids and bases, as well as salts, are in extreme dilution almost completely dissociated into their ions, i.e. HCI into H^{+}and $\mathrm{Cl}^{-}, \mathrm{NaOH}$ into Na^{+}and OH^{-}, and NaCl into Na^{+}and Cl^{-}. On the other hand, water is hardly dissociated at all. The reaction of neutralization of a strong acid with a strong base ... can ... be expressed by $\ldots \mathrm{H}^{+}+\mathrm{OH}^{-}$. This equation is equivalent to the formation of water from its two ions, H^{+}and OH^{-}, and is evidently independent of the nature of the strong acid and the strong base." Svante August Arrhenius, 1903 (Nobel Prize in Chemistry in 1903 "in recognition of the extraordinary services he has rendered to the advancement of chemistry by his electrolytic theory of dissociation".)

7.1 The Nature of Acids and Bases: Acid-Base Theories

Arrhenius

acid - produces $\mathrm{H}^{+}(a q)$ ions (protons) in aqueous solution
base - produces $\mathrm{OH}^{-}(a q)$ ions in aqueous solution

problem - acids only $\mathrm{H}^{+}(a q)$, bases only $\mathrm{OH}^{-}(a q)$, need an aqueous solution

Bronsted-Lowry - focus on hydrogen ion
acid - substance that can donate a hydrogen ion (proton)

Ammonia

 base - substance that can accept a hydrogen ion (proton) => must have lone pair of electrons!

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{CH}_{3} \mathrm{COOH}$
organic acid

Acetic acid
$\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$
little problem - acids can only donate $\mathrm{H}^{+}=>$must have H
Lewis (Chapter 19) - focus on electron pair (we will not use in CHEM 116)
acid - species that accepts a pair of electrons
base - species that donates a pair of electrons advantage - no restriction on acids requiring H atom

7.1 Brønsted-Lowry Acid-Base Theory

Conjugate acids and bases

acids - proton donors $=>$ form a species $\left[\right.$ acid $-\mathrm{H}^{+}$] called conjugate base bases - proton acceptors $=>$ form a species [base $+\mathrm{H}^{+}$] called conjugate acid

Conjugate acid-base pair

EX 1. For each of the following acids write the formula of its conjugate base and for each of the bases write the formula of its conjugate acid.

ACIDS - conjugate base	BASES - conjugate acid
HCl	NH_{3}
$\mathrm{H}_{2} \mathrm{O}$	NaOH
NH_{3}	$\mathrm{H}_{2} \mathrm{~S}$
$\mathrm{CH}_{3} \mathrm{COOH}$	O^{2-}
SH^{-}	CN^{-}

Conjugate Acid-Base Pair Chemistry: $\mathrm{A}_{1}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2}+\mathrm{B}_{1}$
acid - proton donor

strong acid or base often uses reaction arrow
reaction when acid dissolved in water:

base - proton acceptor

(nonaqueous: reaction in liquid ammonia between hydrogen chloride dissolved in liquid ammonia and liquid ammonia)

weak acid or base uses equilibrium arrow
reaction when base dissolved in water:

> two bases competing for the acidic proton - the stronger base "wins"

EX 2. Show how the reaction of aqueous potassium hydroxide with aqueous ammonium sulfate can be viewed as a Brønsted-Lowry acid-base reaction.

EX 3. From the Brønsted-Lowry point of view, which is the stronger acid in the following reaction:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{HNO}_{3}(a q)<=>\mathrm{HSO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{NO}_{3}^{+}(a q)
$$

amphoteric nature

autoionization

of ammonia: $\quad \mathrm{NH}_{3}(l)+\mathrm{NH}_{3}(l)<=>\mathrm{NH}_{4}^{+}(a q)+\mathrm{NH}_{2}^{-}(a q)$

base acid conjugate acid conjugate base

7.2 Acid Strength

strong/weak electrolytes

seven strong acids to know	
hydrochloric acid	HCl
hydrobromic acid	HBr
hydroiodic acid	HI
perchloric acid	HClO_{4}
chloric acid	HClO_{3}
sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
nitric acid	HNO_{3}

acid strength - determined by extent of reaction of acid with water to form $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$, or the extent of its ionization or dissociation, as shown by the magnitude of its equilibrium constant, K_{a} - then for any hydrogen-containing compound, HA

equilibrium constant, $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
K_{a} value	K_{a} is large	K_{a} is small
Position of the dissociation equilibrium	Far to the right	Far to the left
Equilibrium concentration of H^{+}com-	$\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]_{0}$	$\left[\mathrm{H}^{+}\right]<[\mathrm{HA}]_{0}$
pared with original concentration of HA		
Strength of conjugate base compared with that of water	A^{-}much weaker	A^{-}much stronger
base than $\mathrm{H}_{2} \mathrm{O}$	base than $\mathrm{H}_{2} \mathrm{O}$	

Acidity Constants in Water at $25^{\circ} \mathrm{C}$				
Acid	Formula	Conjugate Base	K	pK,
Hydriodic	HI	$1-$	$\approx 10^{11}$	≈-11
Hydrobromic	HBr	Br^{-}	$\Rightarrow 10^{9}$	≈-9
Perchloric	HClO_{4}	ClO_{4}^{-}	$\approx 10^{7}$	≈-7
Hydrochloric	HCl	Cl^{-}	$\sim 10^{7}$	≈-7
Chloric	HClO_{3}	ClO_{3}^{-}	$=10^{3}$	≈-3
Sulfuric (1)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{HSO}_{4}{ }^{-}$	$\approx 10^{2}$	≈-2
Nitric	HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	≈ 20	≈-1.3
Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	1	0.0
Urea acidium ion	$\left(\mathrm{NH}_{2}\right) \mathrm{CONH}_{3}{ }^{\text {+ }}$	$\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ (urea)	6.6×10^{-1}	0.18
Iodic	HIO_{3}	IO_{3}	1.6×10^{-1}	0.80
Oxalic (1)	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	5.9×10^{-2}	1.23
Sulfurous (1)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	HSO_{3}	1.5×10^{-2}	1.82
Sulfuric (2)	HSO_{4}^{-}	SO_{4}^{2-}	1.2×10^{-2}	1.92
Chlorous	HClO_{2}	ClO_{2}^{-}	1.1×10^{-2}	1.96
Phosphoric (1)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.5×10^{-3}	2.12
Arsenic (1)	$\mathrm{H}_{3} \mathrm{AsO}_{4}$	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	5.0×10^{-3}	2.30
Chloroacetic	$\mathrm{ClCH}_{2} \mathrm{COOH}$	$\mathrm{ClCH}_{2} \mathrm{COO}^{-}$	1.4×10^{-3}	2.85
Hydrofluoric	HF	F	6.6×10^{-4}	3.18
Nitrous	HNO_{2}	NO_{2}^{-}	4.6×10^{-4}	3.34
Formic	HCOOH	HCOO^{-}	1.8×10^{-4}	3.74
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	6.5×10^{-5}	4.19
Oxalic (2)	$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	6.4×10^{-5}	4.19
Hydrazoic	HN_{3}	N_{3}	1.9×10^{-5}	4.72
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}	4.74
Propionic	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$	1.3×10^{-5}	4.89
Pyridinium ion	$\mathrm{HC}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}$	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}$ (pyridine)	5.6×10^{-6}	5.25
Carbonic (1)	$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO_{3}^{-}	4.3×10^{-7}	6.37
Sulfurous (2)	HSO_{3}^{-}	SO_{3}^{2-}	1.0×10^{-7}	7.00
Arsenic (2)	$\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$	HASO_{4}^{2-}	9.3×10^{-8}	7.03
Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S}$	HS^{-}	9.1×10^{-8}	7.04
Phosphoric (2)	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	HPO_{4}^{2-}	6.2×10^{-8}	7.21
Hypochlorous	HClO	ClO^{-}	3.0×10^{-8}	7.52
Hydrocyanic	HCN	CN^{-}	6.2×10^{-10}	9.21
Ammonium ion	NH_{4}^{+}	NH_{3}	5.6×10^{-10}	9.25
Carbonic (2)	HCO_{3}^{-}	CO_{3}^{2-}	4.8×10^{-11}	10.32
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	2.3×10^{-11}	10.64
Arsenic (3)	HASO_{4}^{2-}	AsO_{4}^{3-}	3.0×10^{-12}	11.52
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO_{2}^{-}	2.4×10^{-12}	11.62
Phosphoric (3)	HPO_{4}^{2-}	PO_{4}^{2-}	2.2×10^{-13}	12.66
Water	$\mathrm{H}_{2} \mathrm{O}$	OH^{-}	1.0×10^{-14}	14.00
Hydrogen sulfide ion	HS^{-}	S^{2-}	1.0×10^{-19}	19.00
Hydrogen	H_{2}	H^{-}	1.0×10^{-33}	33.00
Ammonia	NH_{3}	NH_{2}^{-}	1.0×10^{-38}	38.00
Hydroxide ion	OH^{-}	O^{2-}		

\uparrow| acids stronger |
| :--- |
| than $\mathrm{H}_{3} \mathrm{O}^{+}$ |

Leveling effect: Acids stronger than the hydronium ion or bases stronger than the hydroxide ion have the same effective strength in water, that of a strong acid or a strong base, since the equilibrium lies so far to the right that it cannot be accurately measured. In general all acids (or bases) stronger than the conjugate acid (or base) of the solvent have the same effective strength in that solvent and the solvent is said to have a leveling effect on those acids and bases.
conjugate bases stronger than
OH^{-}

Conjugate Acid-Base Pairs

the stronger the acid the weaker is its conjugate base
the stronger the base the weaker is its conjugate acid

$$
K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}}
$$

EX 4. K_{a} for hydrosulfuric acid is 9.1×10^{-8} at $25^{\circ} \mathrm{C}$.
a) What is its conjugate base?
b) What is the basicity constant (K_{b}) for its conjugate base?

EX 5. For the reaction

$$
\mathrm{HNO}_{2}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)<=>\mathrm{NO}_{2}^{-}(a q)+\mathrm{CH}_{3} \mathrm{COOH}(a q)
$$

a) From the Brønsted-Lowry point of view, identify each acid and its conjugate base and each base and its conjugate acid.
b) If $K_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=4.6 \times 10^{-4}$ and $K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$ what is K for the reaction?

7.3, 7.4 Water and the $\mathbf{p H}$ Scale

autoionization of water (at $25^{\circ} \mathrm{C}$):

$$
2 \mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.01 \times 10^{-14}=>
$$

Temperature Dependence of $\boldsymbol{K}_{\mathrm{w}}$	
Temperature [${ }^{\circ} \mathbf{C}$]	$\boldsymbol{K}_{\mathbf{w}}$
$\mathbf{0}$	0.114×10^{-14}
$\mathbf{1 0}$	0.292×10^{-14}
$\mathbf{2 0}$	0.681×10^{-14}
$\mathbf{2 5}$	1.01×10^{-14}
$\mathbf{3 0}$	1.47×10^{-14}
$\mathbf{4 0}$	2.92×10^{-14}
$\mathbf{5 0}$	5.47×10^{-14}
$\mathbf{6 0}$	9.61×10^{-14}

EX 6. $K_{\mathrm{w}}=2.4 \times 10^{-14}$ at body temperature $\left(98.6^{\circ} \mathrm{C}=37.0^{\circ} \mathrm{C}\right)$.
a) What is the hydrogen ion concentration?
b) What is the pH ?

condition	concentrations	$\mathrm{pH}\left(\right.$ only at $\left.25^{\circ} \mathrm{C}\right)$	significant figures for logarithms:
acidic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	pH < 7	3 significant digits 3 decimal places
neutral	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	$\mathrm{pH}=7$	\downarrow 仡
basic	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	pH > 7	$\log \left(1.00 \times 10^{-3}=3.000\right.$

some "p" functions
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
$\mathrm{p} K_{\mathrm{W}}=-\log _{10} K_{\mathrm{w}}$
$\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}$
$\mathrm{p} K_{\mathrm{b}}=-\log _{10} K_{\mathrm{b}}$
$\mathrm{p} K_{\text {sp }}=-\log _{10} K_{\text {sp }}$
in general

$$
\mathrm{pX}=-\log _{10} \mathrm{X}
$$

EX 7. Answer each of the following
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.5 \times 10^{-14}, \mathrm{pH}=$?
b) $\mathrm{pH}=9.3,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$?
c) 0.40 moles of $\mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in a liter of water, pOH ?
d) $\mathrm{pH}=9.3,\left[\mathrm{OH}^{-}\right]=$?

7.6 Base Strength

strong/weak electrolytes

soluble strong bases to know	
lithium hydroxide	LiOH
sodium hydroxide	NaOH
potassium hydroxide	KOH
rubidium hydroxide	RbOH
cesium hydroxide	CsOH
barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$

strong bases - all Group I and Group II hydroxides except Be
base strength - (aside from Group I and II hydroxides) determined by extent of reaction of base with water to form $\mathrm{OH}^{-}(a q)$, or extent of its ionization, as shown by the magnitude of its equilibrium constant, K_{b} - then for any base B:
$\mathrm{B}:(a q) \quad+\quad \mathrm{H}_{2} \mathrm{O}(l) \quad<=>\quad \mathrm{OH}^{-}(a q) \quad+\quad \mathrm{BH}^{+}(a q)$

```
base
```

equilibrium constant, $K_{\mathrm{b}}=\underline{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}$
[B:]

Various Ways to Describe Base Strength

Property	Strong Base	Weak Base
K_{b} value	completely, either 1) dissociates to give OH^{-}ions to the solution or	Far to the left
Position of the dissociation equilibrium	2) reacts with water	$\left[\mathrm{OH}^{-}\right]$« $[\mathrm{B}:]_{0}$
Equilibrium concentration of OH^{-}com- pared with original concentration of B:	in either case:	BH^{+}much stronger
Strength of conjugate acid compared with that of water	$\left[\mathrm{OH}^{-}\right]=[\mathrm{B}:]_{0}$	acid than water

